Loading...
Thumbnail Image
Publication

From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean

Citations
Altmetric:
Advisors
Editors
Other Contributors
Affiliation
EPub Date
Issue Date
2017-09-08
Submitted Date
2020-09-11
Subject Terms
bacterial diversity
population dynamics
biogeography
deep-sea mining
polymetallic nodules
colonization
export
Clarion-Clipperton Zone
Collections
Research Projects
Organizational Units
Journal Issue
Other Titles
Abstract
Marine bacteria regulate fluxes of matter and energy essential for pelagic and benthic organisms and may also be involved in the formation and maintenance of commercially valuable abyssal polymetallic nodules. Future mining of these nodule fields is predicted to have substantial effects on biodiversity and physicochemical conditions in mined areas. Yet, the identity and distributions of bacterial populations in deep-sea sediments and associated polymetallic nodules has received relatively little attention. We examined bacterial communities using high-throughput sequencing of bacterial 16S rRNA gene fragments from samples collected in the water column, sediment, and polymetallic nodules in the Pacific Ocean (bottom depth ≥4,000 m) in the eastern Clarion-Clipperton Zone. Operational taxonomic units (OTUs; defined at 99% 16S rRNA gene identity) affiliated with JTB255 (Gammaproteobacteria) and Rhodospirillaceae (Alphaproteobacteria) had higher relative abundances in the nodule and sediment habitats compared to the water column. Rhodobiaceae family and Vibrio OTUs had higher relative abundance in nodule samples, but were less abundant in sediment and water column samples. Bacterial communities in sediments and associated with nodules were generally similar; however, 5,861 and 6,827 OTUs found in the water column were retrieved from sediment and nodule habitats, respectively. Cyanobacterial OTUs clustering among Prochlorococcus and Synechococcus were detected in both sediments and nodules, with greater representation among nodule samples. Such results suggest that vertical export of typically abundant photic-zone microbes may be an important process in delivery of water column microorganisms to abyssal habitats, potentially influencing the structure and function of communities in polymetallic nodule fields.
Citation
Lindh MV, Maillot BM, Shulse CN, Gooday AJ, Amon DJ, Smith CR and Church MJ (2017) From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean. Front. Microbiol. 8:1696.
Publisher
Research Unit
PubMed ID
PubMed Central ID
Embedded videos
Type
Journal Article
Item Description
Copyright © 2017 Lindh, Maillot, Shulse, Gooday, Amon, Smith and Church. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
NHM Repository
Series/Report no.
ISSN
EISSN
1664-302X
ISBN
ISMN
GovDoc
Test Link
Sponsors